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Abstract. A recently developed accurate scheme for converting the single-particle eigenenergies of the
density functional theory into electron binding energies is used to compute the spectra of electron binding
energies in Mg−

4 , Mg−
11, Mg−

16, and Mg−
18. The computations are performed for different isomeric forms

of the clusters using both pseudopotential and all-electron treatments. The results are compared with
the data derived from electron photodetachment experiments, and the role of the different isomers in the
interpretation of these data is examined.

PACS. 36.40.-c Atomic and molecular clusters – 33.60.-q Photoelectron spectra –
31.15.Ew Density-functional theory – 33.15.Ry Ionization potentials, electron affinities,
molecular core binding energy

1 Introduction

Electronic spectroscopy is a powerful tool in studies of
structural and electronic properties of finite systems, be
they atoms, molecules, or clusters [1]. As applied to clus-
ters [2], electronic spectroscopy can shed light on how their
properties change with cluster size. The size-dependence
of cluster features is one of the most, if not the most, fas-
cinating attributes of these systems, and metal clusters
form an especially interesting (and challenging, one might
add) area of the cluster field [3–5]. An illustration of this
is the fact that small atomic clusters of elements, which
are metals in bulk quantities, may not possess metallic
characteristics, or even properties that could be viewed
as the precursor, or finite-size analog, of these character-
istics ([6–10]; and references therein). The emergence of
metal-like properties and their evolution into true metallic
attributes, as a cluster grows in size, is reflected in and can
be characterized by the evolution of its electronic features.
These latter are, of course, coupled with the structural
characteristics. Electronic spectroscopy can thus be used
to interrogate the size-induced nonmetal-to-metal transi-
tion. Its utility, however, is much broader, since electronic
states and their densities are among the most fundamen-
tal properties of systems, and their knowledge allows for
characterization of other features.
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On the theoretical/computational side, density func-
tional theory (DFT) is the approach of choice in elec-
tronic structure computations on medium and large size
systems. For metals this is true even for smaller clusters
in view of the usually considerable (especially for transi-
tion metals) number of electrons to be treated, and the
necessity to consider different possible isomeric forms of
the clusters. An inherent limitation of the Kohn-Sham
(KS) single-particle form of DFT is that its eigenener-
gies correspond to auxiliary quasiparticles, rather than
real electrons. Therefore these (KS) eigenenergies have
to be corrected to make them eigenenergies (or, equiva-
lently, negative of binding energies) of electrons. A vari-
ety of correction schemes was considered in the past. They
either are limited to particular implementations of DFT
(e.g., the local density approximation), have limited accu-
racy, or lack rigorous justification (a brief review is given
in Ref. [11]). Recently, we have formulated a new gen-
eral scheme for computation of the needed corrections [11]
and applied it to study the phenomenon of size-induced
nonmetal-to-metal transition in Mg clusters [7,8]. This
transition has been the subject of two new experimental
studies [9,10].

Here we present results of the application of the new
scheme in computations of the spectra of electron binding
energies for Mg−4 , Mg−11, Mg−16 and Mg−18 clusters. These
four are selected as their measured spectra [10] represent
different characteristic patterns. A sketch of the methodol-
ogy is given in the next Section. The results are presented
and analyzed in Section 3. A brief summary is given in
Section 4.
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2 Methodology

The computations are performed using the gradient-
corrected version of DFT with the Becke exchange [12]
and Perdew′86 [13] correlation functionals (BP′86). The
two 3s electrons of each magnesium atom plus the extra
electron of the cluster anion (the “valence electrons”) are
treated explicitly using a contracted Gaussian basis set
of the type (21|21), which is used in combination with
the Wadt-Hay [14] pseudopotential representation of the
ionic cores of the atoms. This selection of the exchange-
correlation functional and the pseudopotential/basis set
is based on tests performed on neutral Mgn, n = 1−5,
clusters (for details see Ref. [8]), and it was used in our
earlier studies [7,8]. Predicated on the tests, we expect
good agreement between the results of the pseudopoten-
tial and all-electron computations. To verify this expecta-
tion we repeated all the computations with the 6-31G* all-
electron basis set [15]. Results of earlier theoretical studies
of primarily neutral magnesium clusters using alternative
quantum chemical and density functional approaches can
be found in references [16–28].

The search for the isomeric forms of the anionic clus-
ters was performed using gradient-based techniques with
no symmetry constraints imposed. A variety of configura-
tions, both symmetric and asymmetric, was used as initial
guess structures for each cluster size. Normal mode analy-
sis was applied to each stationary configuration obtained,
and only those with all positive frequencies qualified as
isomers.

The computations of the structures also provide the
spectra of their KS eigenenergies. As mentioned, we have
used our new correction scheme to convert these eigenener-
gies into spectra of the corresponding electron binding en-
ergies. The details are presented elsewhere [7,8,11]. Here
we mention only that the new scheme is based on the
following conceptual considerations. The vertical binding
(detachment) energy of the most external electron of an
N -electron system can be computed for any fixed geo-
metrical structure of the system as the difference between
the ground state total electronic energies of this structure
with N−1 and N electrons, respectively. These total ener-
gies are defined within any version of DFT rigorously. The
additive “HOMO” correction needed to obtain the bind-
ing energy of the most external electron in this structure
from the negative of its KS HOMO eigenenergy is then by
definition the difference between the latter two.

Keeping the structure of the system fixed and remov-
ing sequentially the least bound electron, one can convert
any electron of the system into the most external one. The
HOMO correction to the KS eigenenergy of an arbitrary
electron, when it is the most external, can be computed
as defined above. The thus obtained set of the structure-
and orbital-specific HOMO corrections is then evolved via
an interpolation procedure to give the corrections to the
individual KS eigenenergies as they shift with the restora-
tion (“putting back”) of the electrons in the system. The
outcome of the procedure is the additive corrections that
convert the negative of the different KS eigenenergies of

the N -electron system into the binding energies of the cor-
responding electrons.

The merits of the new correction scheme are: (1) it
is applicable to any implementation of DFT; (2) it uses
only quantities rigorously defined within DFT; (3) it
yields orbital- or, alternatively, electron-specific correc-
tions; (4) it furnishes highly accurate electron binding en-
ergies, provided these energies are reproduced by the cho-
sen version of DFT accurately when the electrons play the
role of the most external one (results of tests on atoms of
ten elements and three molecules are given in Ref. [11]).
All-electron BP′86 computations with the 6-31G* basis
set on the Mg atom yield electron binding energies that
are on average within 1.3% of the measured values. As
mentioned, the corrections to the KS eigenenergies are
structure-specific. In what follows we consider the an-
ionic magnesium clusters fixed in their respective isomeric
forms.

3 Results

In earlier studies [7,8], which focused on the size-induced
nonmetal-to-metal transition, we have shown that the
size-dependence of the difference in the computed bind-
ing energies of the two most external electrons of Mg−n ,
n = 2−22, clusters, each considered in its most stable
structure, is in good agreement with the data derived from
the experiments [10]. This difference is the anionic finite-
size analog of the gap between the valence and the conduc-
tion bands in the bulk (cf. the discussion in Refs. [7,8]),
and therefore it can serve as an indicator of the degree
of metallicity. Here we consider four clusters, Mg−4 , Mg−11,
Mg−16, and Mg−18, for which the computed difference in
the mentioned binding energies is 1.493 eV, 0.461 eV,
0.245 eV, and 0 eV, respectively. But, instead of the dif-
ference, here we focus on the electron binding energies
themselves, and not only for the two most external elec-
trons. In addition, for each cluster we consider not only
its most stable configuration, but all the isomers identi-
fied for it. The structural and energy characteristics of
the isomers are summarized in Table 1. For each cluster
size, the energies are referred to that of the most stable
configuration.

The only stable equilibrium structure we found for
Mg−4 is a tetrahedron (see Fig. 1) with a bond length of
3.076 Å or 3.086 Å as obtained within the pseudopotential
and the all-electron computations, respectively. For Mg−11
we have identified two isomers (see Fig. 2) with very close
energies. The structure of the second isomer with C2v sym-
metry is only slightly distorted from that of a perfect D3h

pentacapped trigonal prism. The search produced three
isomers for Mg−16 (see Fig. 3). The first two, both of Cs

symmetry, have close energies, while the third has a higher
energy. The C3v symmetry of the third isomer, as obtained
within the pseudopotential computation, gets reduced to
the Cs symmetry of the close but slightly distorted form of
this isomer furnished by the all-electron treatment. Three
isomers were also found for Mg−18 (see Fig. 4). Whereas all
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Table 1. Isomeric forms (Iso), their symmetries (Sym) and
configurational energies (∆E) of the four clusters. For each
cluster the energies are referred to that of its most stable struc-
ture. The isomers obtained within the pseudopotential and the
all-electron approaches are labeled by roman and arabic nu-
merals, respectively.

Cluster
Pseudopotential All-electron

Iso Sym ∆E(eV) Iso Sym ∆E(eV)

Mg−
4 I Td 0 1 Td 0

Mg−
11

I Cs 0 1 Cs 0

II C2v 0.043 2 C2v 0.061

Mg−
16

I Cs 0 1 Cs 0

II Cs 0.098 2 Cs 0.056

III C3v 0.377 3 Cs 0.216

Mg−
18

I C4v 0 1 C2v 0

II C2v 0.008 2 C4v 0.024

III Cs 0.025 3 Cs 0.034

Fig. 1. The measured [10] and computed electron binding en-
ergies of the single isomer of Mg−

4 .

three are almost degenerate within both the pseudopoten-
tial and the all-electron computations, the two treatments
invert the energy ordering of the first two isomers. Also,
the second isomer emerges as energetically closer to the
first one in the pseudopotential treatment and to the third
one in the all-electron computation. Overall, the two treat-
ments give very similar results. As a final remark on the
structural forms we mention that, with the exception of
the C4v isomer of Mg−18, they all correspond to the doublet
spin-multiplicity state. The spin state of the C4v isomer is
a quartet.

In Table 2 we list the KS eigenenergies, the correspond-
ing corrections, and the obtained from these binding ener-
gies of the valence electrons of the Mg−4 cluster (note that
the KS HOMO eigenenergy is positive in this case, but this
poses no problem in the new correction scheme [7,8,11]).
The computed binding energies with values less than or

Table 2. The KS eigenenergies (ε) of the valence orbitals of
the Mg−

4 cluster, and the corresponding corrections (∆) and
electron binding energies (BE), all in units of eV. α and β label
the majority and the minority spins, respectively. The numbers
in brackets indicate the number of electrons (occupancy) in the
different orbitals.

Orbital
Pseudopotential All-electron

−ε ∆ BE −ε ∆ BE

a1(α)[1] –0.603 1.614 1.012 –0.663 1.608 0.945

t2(β)[3] 0.841 1.664 2.505 0.877 1.661 2.538

t2(α)[3] 0.984 1.670 2.654 1.012 1.666 2.678

a1(β)[1] 3.612 1.816 5.428 3.465 1.804 5.269

a1(α)[1] 3.723 1.821 5.544 3.674 1.814 5.488

Fig. 2. The measured and computed electron binding energies
of the Mg−

11 cluster. The numbers label the isomers as defined
in Table 1.

equal to 3.5 eV are presented graphically and compared
with the available measured spectrum of electron binding
energies [10] in Figure 1. The results of the pseudopoten-
tial and all-electron computations are very close, and both
are in excellent agreement with the measured data.

A similar comparison for the Mg−11 cluster is pre-
sented in Figure 2. Again, the pseudopotential and the
all-electron results are in good agreement. But only for
the first isomer do the electron binding energies match all
the features of the measured spectrum. The least bound
electron of the second isomer appears not to be repre-
sented in the experimental data.
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Fig. 3. The measured and computed electron binding energies
of the Mg−

16 cluster. The numbers label the isomers as defined
in Table 1.

The results for Mg−16 are given in Figure 3. Whereas
the overall agreement between the pseudopotential and
the all-electron values is good for all three isomers, it is
particularly close for the most stable structure of the clus-
ter. And it is this structure for which the pattern of the
distribution of the electron binding energies matches the
shape of the experimental spectrum very well. One should
note though that over the range considered, all the bind-
ing energies for the second isomer, – these are distributed
more evenly than those for either the first or the third iso-
mer, – fall under the experimental spectrum. Therefore,
and taking into account that the configurational energies
of the first two isomers are very close, one cannot claim
with certainty that the second isomer is not represented
in the measured data. Such a claim can, however, be made

Fig. 4. The measured and computed electron binding energies
of the Mg−

18 cluster. The numbers label the isomers as defined
in Table 1.

for the third isomer. The least bound electron of the latter
has no trace in the experimental spectrum.

Data analogous to those in Table 2, but for the three
isomers of Mg−18, are presented in Table 3. The pseudopo-
tential and the all-electron approaches yield very close
electron binding energies. One should notice, however,
that the two treatments switch the energy ordering of the
KS eigenenergies and the corresponding electron binding
energies for some orbitals of the first two isomers of the
cluster.

The computed results for Mg−18 are displayed graphi-
cally together with the measured data in Figure 4. Inspec-
tion of the graphs shows that whereas for the C4v isomer
(isomer I, as defined by the pseudopotential treatment; cf.
Tab. 1) the electron binding energies tend to bunch into
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Table 3. The same as Table 2, but for the three isomers of
Mg−

18 and KS eigenenergies whose corresponding electron bind-
ing energies are less than or equal to 4.2 eV.

Sym Orbital
Pseudopotential All-electron

−ε ∆ BE −ε ∆ BE

Iso I Iso 2
e(α)[2] 1.173 1.254 2.427 1.109 1.250 2.359
a1(α)[1] 1.178 1.254 2.432 1.131 1.250 2.381
a1(β)[1] 1.341 1.256 2.596 1.393 1.254 2.647
b2(β)[1] 1.371 1.256 2.627 1.367 1.254 2.621
e(β)[2] 1.469 1.257 2.726 1.519 1.256 2.774
b2(α)[1] 1.470 1.257 2.727 1.466 1.256 2.722

C4v b1(β)[1] 1.472 1.257 2.729 1.460 1.255 2.715
a1(α)[1] 1.478 1.257 2.736 1.525 1.257 2.782
b1(α)[1] 1.578 1.259 2.837 1.568 1.258 2.826
e(α)[2] 1.605 1.259 2.864 1.641 1.259 2.899
e(β)[2] 1.732 1.260 2.992 1.724 1.259 2.983
e(α)[2] 1.815 1.262 3.076 1.813 1.260 3.073
a1(β)[1] 2.354 1.269 3.623 2.450 1.270 3.720
a1(α)[1] 2.761 1.274 4.035 2.833 1.276 4.109

Iso II Iso 1
b2(α)[1] 1.109 1.237 2.347 1.050 1.240 2.290
a1(β)[1] 1.126 1.238 2.364 1.115 1.241 2.356
a1(α)[1] 1.164 1.238 2.403 1.148 1.241 2.389
b1(β)[1] 1.392 1.242 2.634 1.367 1.243 2.610
b2(β)[1] 1.393 1.242 2.635 1.391 1.244 2.635
a1(β)[1] 1.433 1.243 2.676 1.472 1.244 2.716
a1(α)[1] 1.453 1.243 2.696 1.494 1.247 2.742
b1(α)[1] 1.454 1.243 2.697 1.423 1.244 2.668
b2(α)[1] 1.457 1.243 2.700 1.452 1.245 2.697

C2v a2(β)[1] 1.624 1.246 2.870 1.615 1.245 2.860
a2(α)[1] 1.679 1.247 2.925 1.669 1.247 2.916
a1(β)[1] 1.686 1.247 2.933 1.707 1.246 2.953
b2(β)[1] 1.693 1.247 2.940 1.711 1.247 2.958
a1(α)[1] 1.709 1.247 2.956 1.730 1.248 2.978
b2(α)[1] 1.744 1.248 2.992 1.762 1.249 3.011
b1(β)[1] 1.788 1.249 3.036 1.823 1.248 3.071
b1(α)[1] 1.799 1.249 3.047 1.834 1.249 3.083
a1(β)[1] 2.503 1.260 3.763 2.573 1.259 3.832
a1(α)[1] 2.627 1.262 3.889 2.691 1.260 3.951

Iso III Iso 3
a′′(α)[1] 1.008 1.234 2.242 1.011 1.230 2.241
a′(β)[1] 1.048 1.235 2.283 1.047 1.231 2.278
a′′(α)[1] 1.115 1.236 2.351 1.071 1.232 2.303
a′(β)[1] 1.354 1.240 2.594 1.324 1.236 2.560
a′(α)[1] 1.410 1.241 2.651 1.374 1.237 2.611
a′′(β)[1] 1.432 1.241 2.673 1.442 1.239 2.680
a′′(α)[1] 1.482 1.242 2.724 1.473 1.239 2.712
a′′(β)[1] 1.506 1.242 2.748 1.493 1.240 2.732
a′′(α)[1] 1.537 1.243 2.780 1.545 1.241 2.785

Cs a′(β)[1] 1.538 1.243 2.781 1.551 1.241 2.792
a′(α)[1] 1.545 1.243 2.788 1.560 1.241 2.801
a′(β)[1] 1.738 1.246 2.985 1.745 1.244 2.990
a′(α)[1] 1.770 1.247 3.017 1.777 1.245 3.021
a′′(β)[1] 1.870 1.248 3.118 1.847 1.246 3.093
a′′(α)[1] 1.902 1.249 3.151 1.884 1.247 3.131
a′(β)[1] 1.938 1.250 3.188 1.931 1.247 3.178
a′(α)[1] 1.969 1.250 3.219 1.956 1.248 3.204
a′(β)[1] 2.333 1.257 3.590 2.411 1.256 3.667
a′(α)[1] 2.458 1.259 3.717 2.532 1.258 3.790

two manifolds (this is more pronounced in the all-electron
results), these energies for the C2v and Cs isomers (iso-
mers II and III) group into three manifolds. In this re-
spect, the electron binding energies of isomer I match the
overall bimodal pattern of the measured spectrum better
than those of isomers II and III. However, as evaluated
over the range covered by the experiments, the measured
spectrum may contain contributions from all three ener-
getically close isomers.

The above results clearly show that the measured spec-
tra of electron binding energies can be analyzed in terms
of the computed isomer-specific electron binding energies
as obtained within the DFT. Examination of the correc-
tions ∆ that convert the KS eigenenergies into electron
binding energies (see Tabs. 2 and 3), as computed using
the new scheme [7,8,11], shows that for a given isomer of
the cluster the values of ∆ depend only weakly on the or-
bital. This is true at least for the valence orbitals, and the
dependence decreases as the cluster size increases. More-
over, the dependence of the corrections on the isomeric
form of the cluster also appears to be only weak. Although
these observations seem to be quite general [29], tests on
a case by case basis are recommended.

As illustrated by the paradigms of Mg−11 and Mg−16,
comparison of the computed electron binding energies
with the measured spectra may eliminate certain isomeric
forms from the consideration. But the situation is not al-
ways clearcut. As discussed in the context of the analysis
of the data for the Mg−16 and Mg−18 clusters, the experi-
mental spectra may contain contributions from different
isomers. This is especially true if the experiments are per-
formed at elevated temperatures (the notion “elevated”
is, of course, used here as a relative term). A quantitative
evaluation of the temperature-dependent contribution of
the individual isomers will require computation of the den-
sities of states. An experimental verification of this evalu-
ation will need measuring the spectra at different temper-
atures.

4 Summary

In this paper we presented results of computations on the
electron binding energies for four anionic magnesium clus-
ters. These are obtained within the BP′86 version of DFT
combined with a new accurate correction scheme for con-
verting the KS eigenenergies into electron binding ener-
gies. The latter are computed for different isomeric forms
of the clusters using both pseudopotential-based and all-
electron treatments. The two yield very similar results. For
a given cluster size, the correction terms, although in gen-
eral orbital-dependent, are found to depend only weakly
on the KS eigenenergies, at least those that correspond
to valence orbitals. They depend also only weakly on the
isomeric form of the cluster.

The computed electron binding energies are compared
with the available measured spectra. The shapes of the
spectra for different cluster sizes are matched very well
by the patterns of the binding energies corresponding to
the most stable structures of the clusters. In some cases,
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the comparison allows for elimination of an isomer as a
contributor to the spectrum. In others, the indications are
that more than one isomer may contribute to the spec-
trum. The study illustrates how a combined analysis of
the computed and measured electron binding energies can
shed light on the intricate interplay between the struc-
tural and electronic properties of systems, in general, and
clusters, in particular.
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